
EuroCC@Turkey

Parallel Computing on GPUs with

CUDA

Dr. Özcan DÜLGER

Computer Engineering, Middle East Technical University

Computer Engineering, Artvin Coruh University

27 April 2022

Contents

 Debugging and Profiling Performance

 Performance Optimization and Efficiency

 Some Libraries and Remaining Issues

 CUDA Samples

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA 2

TESLA K40

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA 3

Performance Optimization and

Efficiency

 Memory Coalesced Access to Global Memory

 Warp Divergence

 Device Occupancy and SM Efficiency

 Efficient Parallel Reduction Algorithm

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA 4

Memory Coalesced Access

 Reading from or writing to global memory performs segment by segment

 The threads in a warp are physically related to each other. That means a

warp completes its instruction when all the threads in the warp complete

the instruction

 In global memory operations, if the threads in the warp access to the

different segments of the global memory, the operations become serial

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA 5

None Coalesced Access

warp1 warp2 Last warp

………………………………………………

………………………………………………

segment1 segment2 Last segment

Global Memory

27 April 2022
EuroCC@Turkey, Parallel Computing on GPUs with CUDA

6

Memory Coalesced Access

warp1 warp2 Last warp

…………………………………………………

…………………………………………………

segment1 segment2 Last segment

Global Memory

27 April 2022
EuroCC@Turkey, Parallel Computing on GPUs with CUDA

7

Example of Memory Coalesced Access

Load in one transaction

Load in at most 32 transactions

XORWOW Generators

Load the state of the generator of each thread from

global memory as a coalesced way

Note: We use cudaEventRecord in order to

measure the kernel execution times

8

Metrics:

gld_transactions: Number of global memory load transactions

gld_transactions_per_request: Average number of global memory load

transactions performed for each global memory load

9

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA 10

Grouping

………………………………………………

Global Memory

segment1 segment2 Last segment

Group 1 Group N Last Group

• A group consists of contiguous segments

• The number of segments in the group can be

• between 1 and 32 (warp size)

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA 11

Dülger, Ö., Oğuztüzün, H. & Demirekler, M. Memory Coalescing Implementation of Metropolis Resampling

on Graphics Processing Unit. J Sign Process Syst 90, 433–447 (2018)

Grouping

………………………………………………

Global Memory

segment1 segment2 Last segment

Group 1 Group N Last Group

…………………………………………………

warp1 warp2 Last warp
12

• The number of segments is 16 in a group

• So the memory operations of a warp will perform at

most 16 transactions

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA 13

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA 14

c

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA 15

Warp Divergence

 Some of the structures such as ‘If-Else’ structure are considered as a single instruction
for a warp

 A warp completes such instructions when all the threads in the warp complete those
instructions

 If the threads in a warp execute the different paths of ‘If-Else’ structure, executing
these paths become serial

 if(tid %2 == 0)//tid is global thread id

…………..

else

…………..

 First the threads with even thread id in a warp execute ‘if’ path, and the remaining
threads wait

 Then the threads with odd thread id in a warp execute the ‘else’ path, and the
remaining threads wait

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA 16

Warp Divergence

 It is important that all the threads in a warp execute the same path of the ‘if-

Else’ structure

 This can be ensured by using warp id in the condition of the structure

 if((tid/32) %2 == 0)//tid is the global thread id

…………..

else

…………..

 The threads in a warp whose warp id is even execute the ‘if’ path

 The threads in a warp whose warp id is odd execute the ‘else’ path

 So executing the paths do not become serialized

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA 17

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA 18

• Sufficiently number of paths (4)

• Sufficiently number of repetitions of the instruction (100)

• Memory operations are coalesced, so the divergence

dominates the execution time

• We use cudaEventRecord in order to measure the kernel

execution times

• Distribute the paths according to warp id

• First warp executes addition, second warp executes

subtraction and so on

• Distribute the paths according to thread id

• First thread executes addition, second thread

executes subtraction and so on

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA 19

Metric:

warp_execution_efficiency: Ratio of the average active threads per warp to the maximum number of

threads per warp supported on a multiprocessor expressed as percentage

Occupancy

 is the ratio of active warps to the maximum number of resident warps

supported on a multiprocessor

 is related with resource limitations of the SMX. These limitations are:

 Maximum number of threads per multiprocessor (2048)

 Maximum number of threads per block (1024)

 Maximum number of blocks per multiprocessor (16)

 Shared memory and registers

 --ptxas-options=-v gives us the shared memory and register usage

 The main target is to find the optimum number of threads in a block in order

to achieve maximum occupancy

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA 20

Occupancy

 Set the block size as 64:

 At most 16x64 (1024) threads can be active in a SMX

 %50 theoretical occupancy

 Set the block size as 128:

 At most 16x128 (2048) threads can be active in a SMX

 %100 theoretical occupancy

 Set the block size as 1024:

 At most 2x1024 (2048) threads can be active in a SMX

 %100 theoretical occupancy

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA 21

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA 22

In scenario 1, we set the number of threads as data_size until

data_size is 2048

In scenario 2, we set the number of threads as 32 until

data_size is 1024. Then we double the number of threads until

data_size is 16384

• We set the number of iterations as 1000000 so that ‘if-elseif’

structure dominates the execution time

• No warp divergence is occurred

• We use cudaEventRecord in order to measure the kernel

execution times

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA 23

data_size Scenario 1 Scenario 2

of

threads

of

blocks

T. Occup. # of threads # of

blocks

T.

Occup.

32 32 1 %25 32 1 %25

64 64 1 %50 32 2 %25

128 128 1 %100 32 4 %25

256 256 1 %100 32 8 %25

512 512 1 %100 32 16 %25

1024 1024 1 %100 64 16 %50

2048 1024 2 %100 128 16 %100

4096 1024 4 %100 256 16 %100

8192 1024 8 %100 512 16 %100

16384 1024 16 %100 1024 16 %100

32768 1024 32 %100 1024 32 %100

65536 1024 64 %100 1024 64 %100

 Increasing theoretical occupancy does not always mean better time performance

 Utilization of streaming multiprocessors efficiently is also an important issue for the better time

performance

 In the second scenario, we try to distribute the blocks to the SMs evenly

Occupancy

SM Efficiency

 sm_efficiency metric: The percentage of time at least one warp is active on

a multiprocessor averaged over all multiprocessors on the GPU

 The ratios of the running time of each SM to the total running time of the GPU is

calculated. The average of these ratios is the result of the metric

 achieved_occupancy metric: the ratio of the average active warps per active

cycle to the maximum number of warps supported on a multiprocessor

 achieved_occupancy can not exceed the theoretical occupancy

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA 24

25

Data

Size

S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

of threads # of blocks SM Efficiency T. Occup. Achieved Occ. Exec. Time

32 32 32 1 1 6.54% 6.55% 25% 25% 1.5% 1.5% 0.35 0.35

64 64 32 1 2 6.54% 12.46% 50% 25% 2.9% 1.5% 0.41 0.41

128 128 32 1 4 6.54% 18.83% 100% 25% 4.3% 1.5% 0.69 0.69

256 256 32 1 8 6.54% 37.17% 100% 25% 8.8% 1.5% 0.70 0.69

512 512 32 1 16 6.54% 68.48% 100% 25% 17% 1.6% 0.71 0.69

1024 1024 64 1 16 6.54% 78.32% 100% 50% 35% 2.8% 0.74 0.70

2048 1024 128 2 16 13.15% 96.32% 100% 100% 35% 4.7% 0.75 0.70

4096 1024 256 4 16 26.26% 95.91% 100% 100% 35% 9.4% 0.75 0.72

8192 1024 512 8 16 52.41% 95.10% 100% 100% 35% 18% 0.75 0.74

16384 1024 1024 16 16 83.29% 83.28% 100% 100% 39% 39% 0.91 0.91

32768 1024 1024 32 32 62.07% 62.11% 100% 100% 72% 72% 1.6 1.6

65536 1024 1024 64 64 72.80% 72.80% 100% 100% 77% 75% 2.49 2.49

 Values with green background mean the scenario is better than the other scenario for the corresponding output

 Values with yellow background mean both scenarios have the same values of parameters. Hence the values of the outputs

are almost same

 Having better theoretical and achieved occupancy does not always mean better time performance

 In this example, SM efficiency is more effective on the execution time of the kernel

 Even though S1 has better occupancy, the execution times of S2 are better than those in S1 in some cases

Causes of Low Achieved Occupancy

1. Unbalanced workload within blocks

 the warps in a block have unbalanced workload

2. Unbalanced workload across blocks

 the blocks in a grid have unbalanced workload

3. Too few blocks launched

 running few blocks in an SM than the maximum active blocks per SM

4. Partial last wave

 maximum number of warps that can be active at once in an SM

 https://docs.nvidia.com/gameworks/content/developertools/desktop/analysi

s/report/cudaexperiments/kernellevel/achievedoccupancy.htm

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA 26

https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedoccupancy.htm

Optimizing Parallel Reduction in CUDA

Mark Harris

NVIDIA Developer Technology

https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA 27

https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

Parallel Reduction

 Tree based approach is used for each thread block

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA 28

 We need too many blocks when:

 the array size is very large

 we want to keep all SMs on the GPU busy

 Each block does reduction over each portion of the array and produces a single output

 How do we combine the output of each block?

Ref: Mark Harris - https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

Global Synchronization

 Once the partial outputs of the blocks are produced, a synchronization mechanism between

the blocks is needed in order to combine them.

 The blocks must wait in a synchronization point until all the blocks complete producing their

outputs. Then recursive processes should follow to obtain overall output.

 In CUDA, the synchronization between the threads in the same block is possible.

 However, the threads in different blocks can not be synchronized each other.

 Because the synchronization of the blocks is expensive for the GPUs whose processor counts is large

 In fact, CUDA forces the programmers to create fewer blocks which may reduce the overall efficiency

 Using multiple kernels is a good solution. There is an implicit barrier between the kernel

launches. The next kernel can not be executed before the current kernel finishes its

execution.

 By the way, kernel launch has low overhead

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA 29

Multiple Kernels and The Goal

 The code of both kernels is same. So we can launch them recursively.

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA 30

Kernel runs with

8 blocks

Kernel runs with

1 block

Ref: Mark Harris - https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

 Since the reduction has low arithmetic cost, we should try to achieve high bandwidth.

 NVIDIA G80 is used in this experiment.

 86GB/s memory bandwidth

Reduction 1: Interleaved Addressing

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA 31

Local thread id

Global thread id

Threads in the same block synchronize here

Threads whose local id is 0 or multiple of 2*s

Ref: Mark Harris - https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

Interleaved Addressing 1

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA 32

Ref: Mark Harris - https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

Reduction 1: Interleaved Addressing

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA

33

Ref: Mark Harris - https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

Performance for 4M element reduction

 The block size is 128 threads for all kernel launches

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA 34

Ref: Mark Harris - https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

Reduction 2: Interleaved Addressing

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA 35

Ref: Mark Harris - https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

Interleaved Addressing 2

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA 36

Ref: Mark Harris - https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

Valid for first generation

hardware

Performance for 4M element reduction

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA 37

Ref: Mark Harris - https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

Sequential Addressing

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA 38

Ref: Mark Harris - https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

Conflict Free

Reduction 3: Sequential Addressing

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA 39

Ref: Mark Harris - https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

Performance for 4M element reduction

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA 40

Ref: Mark Harris - https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

Idle Threads

 Half of the threads are idle in the first iteration of the loop. Wasteful!

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA 41

Ref: Mark Harris - https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

Reduction 4: First Add During Load

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA 42

Ref: Mark Harris - https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

Performance for 4M element reduction

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA 43

Ref: Mark Harris - https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

Unrolling the Last Warp

 17 GB/s is very low

 Loop overhead occurs!

 The number of the active threads reduces at each iteration of the loop

 When s < 32, only one warp is active!

 Since the threads in a warp execute the same instruction at a time, we do not

need to synchronize them and do not need __syncthreads() function

 No need to evaluate last 6 iterations of the loop for the remaining warps

 So one can unroll the last 6 iterations of the loop

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA 44

Reduction 5: Unroll the Last Warp

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA 45

Ref: Mark Harris - https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

Disabling

optimizations

(such as caching)

Performance for 4M element reduction

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA 46

Ref: Mark Harris - https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

Complete Unrolling

 Can we unroll all of the iterations of the loop?

 Since the possible values of the block size are fixed and known at compile

time and there is an upper limit on it, one can completely unroll the

iterations of the loop.

 Using C++ templates enables us to do it

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA 47

Function template parameter

Ref: Mark Harris - https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

Completely Unrolled

 The maximum block size is 1024 in newer GPUs !

 Reds are evaluated at compile time

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA

48Ref: Mark Harris - https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

Invoking Template Kernels

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA 49

 10 + 1 (1024) = 11 possible block sizes

Ref: Mark Harris - https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

Performance for 4M element reduction

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA 50

Ref: Mark Harris - https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

Cost and Algorithm Cascading

 Step Complexity: O(log N)

 Work Complexity: O(N)

 Time Complexity: O(log N)

 Processor Time Complexity: O(Nlog N)

 Algorithm Cascading: Combining sequential and parallel reduction

 Each thread performs loading and summing multiple elements sequentially and

store the result to the shared memory

 Tree based reduction performs through shared memory in parallel

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA 51

Reduction 7: Multiple Adds / Thread

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA 52

Ref: Mark Harris - https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

Maintain coalescing

Decreasing the number of

blocks means increasing

the number of iterations

of ‘while’ loop

A balance between the

level of the tree and the

iteration of the loop

should be maintained

Performance for 4M element reduction

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA 53

Ref: Mark Harris - https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

Final Optimized Kernel

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA

54
Ref: Mark Harris - https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

Performance Comparison

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA

55
Ref: Mark Harris - https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

References

 https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-

product-literature/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf

 https://docs.nvidia.com/cuda/pdf/CURAND_Library.pdf

 https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EVENT.html

 https://docs.nvidia.com/cuda/profiler-users-guide

 Dülger, Ö., Oğuztüzün, H. & Demirekler, M. Memory Coalescing Implementation of

Metropolis Resampling on Graphics Processing Unit. J Sign Process Syst 90, 433–

447 (2018) https://rdcu.be/cLz8N

 https://docs.nvidia.com/cuda/cuda-occupancy-calculator/index.html

 https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/

report/cudaexperiments/kernellevel/achievedoccupancy.htm

 https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA 56

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf
https://docs.nvidia.com/cuda/pdf/CURAND_Library.pdf
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EVENT.html
https://docs.nvidia.com/cuda/profiler-users-guide
https://rdcu.be/cLz8N
https://docs.nvidia.com/cuda/cuda-occupancy-calculator/index.html
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedoccupancy.htm
https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

