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Memory Coalesced Access

 Reading from or writing to global memory performs segment by segment

 The threads in a warp are physically related to each other. That means a

warp completes its instruction when all the threads in the warp complete

the instruction

 In global memory operations, if the threads in the warp access to the

different segments of the global memory, the operations become serial
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None Coalesced Access

warp1 warp2 Last warp

………………………………………………

………………………………………………

segment1 segment2 Last segment

Global Memory
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Memory Coalesced Access
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Example of Memory Coalesced Access

Load in one transaction

Load in at most 32 transactions

XORWOW Generators

Load the state of the generator of each thread from 

global memory as a coalesced way

Note: We use cudaEventRecord in order to 

measure the kernel execution times

8



Metrics:

gld_transactions: Number of global memory load transactions

gld_transactions_per_request: Average number of global memory load 

transactions performed for each global memory load

9
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Grouping

………………………………………………

Global Memory

segment1 segment2 Last segment

Group 1 Group N Last Group

• A group consists of contiguous segments

• The number of segments in the group can be

• between 1 and 32 (warp size)
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Dülger, Ö., Oğuztüzün, H. & Demirekler, M. Memory Coalescing Implementation of Metropolis Resampling 

on Graphics Processing Unit. J Sign Process Syst 90, 433–447 (2018)



Grouping

………………………………………………

Global Memory

segment1 segment2 Last segment

Group 1 Group N Last Group

…………………………………………………

warp1 warp2 Last warp
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• The number of segments is 16 in a group

• So the memory operations of a warp will perform at 

most 16 transactions
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Warp Divergence

 Some of the structures such as ‘If-Else’ structure are considered as a single instruction 
for a warp

 A warp completes such instructions when all the threads in the warp complete those 
instructions

 If the threads in a warp execute the different paths of ‘If-Else’ structure, executing 
these paths become serial

 if(tid %2 == 0)//tid is global thread id

…………..

else

…………..

 First the threads with even thread id in a warp execute ‘if’ path, and the remaining 
threads wait

 Then the threads with odd thread id in a warp execute the ‘else’ path, and the 
remaining threads wait
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Warp Divergence

 It is important that all the threads in a warp execute the same path of the ‘if-

Else’ structure

 This can be ensured by using warp id in the condition of the structure

 if( (tid/32)  %2  ==  0)//tid is the global thread id

…………..

else

…………..

 The threads in a warp whose warp id is even execute the ‘if’ path

 The threads in a warp whose warp id is odd execute the ‘else’ path

 So executing the paths do not become serialized
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• Sufficiently number of paths (4)

• Sufficiently number of repetitions of the instruction (100)

• Memory operations are coalesced, so the divergence 

dominates the execution time

• We use cudaEventRecord in order to measure the kernel 

execution times

• Distribute the paths according to warp id

• First warp executes addition, second warp executes 

subtraction and so on

• Distribute the paths according to thread id

• First thread executes addition, second thread 

executes subtraction and so on
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Metric:

warp_execution_efficiency: Ratio of the average active threads per warp to the maximum number of 

threads per warp supported on a multiprocessor expressed as percentage



Occupancy

 is the ratio of active warps to the maximum number of resident warps 

supported on a multiprocessor

 is related with resource limitations of the SMX. These limitations are:

 Maximum number of threads per multiprocessor (2048)

 Maximum number of threads per block (1024)

 Maximum number of blocks per multiprocessor (16)

 Shared memory and registers

 --ptxas-options=-v gives us the shared memory and register usage

 The main target is to find the optimum number of threads in a block in order 

to achieve maximum occupancy
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Occupancy

 Set the block size as 64:

 At most 16x64 (1024) threads can be active in a SMX

 %50 theoretical occupancy

 Set the block size as 128:

 At most 16x128 (2048) threads can be active in a SMX

 %100 theoretical occupancy

 Set the block size as 1024:

 At most 2x1024 (2048) threads can be active in a SMX

 %100 theoretical occupancy
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In scenario 1, we set the number of threads as data_size until 

data_size is 2048

In scenario 2, we set the number of threads as 32 until 

data_size is 1024. Then we double the number of threads until 

data_size is 16384 

• We set the number of iterations as 1000000 so that ‘if-elseif’ 

structure dominates the execution time

• No warp divergence is occurred

• We use cudaEventRecord in order to measure the kernel 

execution times
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data_size Scenario 1 Scenario 2

# of 

threads

# of 

blocks

T. Occup. # of threads # of 

blocks

T. 

Occup.

32 32 1 %25 32 1 %25

64 64 1 %50 32 2 %25

128 128 1 %100 32 4 %25

256 256 1 %100 32 8 %25

512 512 1 %100 32 16 %25

1024 1024 1 %100 64 16 %50

2048 1024 2 %100 128 16 %100

4096 1024 4 %100 256 16 %100

8192 1024 8 %100 512 16 %100

16384 1024 16 %100 1024 16 %100

32768 1024 32 %100 1024 32 %100

65536 1024 64 %100 1024 64 %100

 Increasing theoretical occupancy does not always mean better time performance

 Utilization of streaming multiprocessors efficiently is also an important issue for the better time 

performance

 In the second scenario, we try to distribute the blocks to the SMs evenly

Occupancy



SM Efficiency

 sm_efficiency metric: The percentage of time at least one warp is active on

a multiprocessor averaged over all multiprocessors on the GPU

 The ratios of the running time of each SM to the total running time of the GPU is

calculated. The average of these ratios is the result of the metric

 achieved_occupancy metric: the ratio of the average active warps per active

cycle to the maximum number of warps supported on a multiprocessor

 achieved_occupancy can not exceed the theoretical occupancy
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Data

Size

S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

# of threads # of blocks SM Efficiency T. Occup. Achieved Occ. Exec. Time

32 32 32 1 1 6.54% 6.55% 25% 25% 1.5% 1.5% 0.35 0.35

64 64 32 1 2 6.54% 12.46% 50% 25% 2.9% 1.5% 0.41 0.41

128 128 32 1 4 6.54% 18.83% 100% 25% 4.3% 1.5% 0.69 0.69

256 256 32 1 8 6.54% 37.17% 100% 25% 8.8% 1.5% 0.70 0.69

512 512 32 1 16 6.54% 68.48% 100% 25% 17% 1.6% 0.71 0.69

1024 1024 64 1 16 6.54% 78.32% 100% 50% 35% 2.8% 0.74 0.70

2048 1024 128 2 16 13.15% 96.32% 100% 100% 35% 4.7% 0.75 0.70

4096 1024 256 4 16 26.26% 95.91% 100% 100% 35% 9.4% 0.75 0.72

8192 1024 512 8 16 52.41% 95.10% 100% 100% 35% 18% 0.75 0.74

16384 1024 1024 16 16 83.29% 83.28% 100% 100% 39% 39% 0.91 0.91

32768 1024 1024 32 32 62.07% 62.11% 100% 100% 72% 72% 1.6 1.6

65536 1024 1024 64 64 72.80% 72.80% 100% 100% 77% 75% 2.49 2.49

 Values with green background mean the scenario is better than the other scenario for the corresponding output

 Values with yellow background mean both scenarios have the same values of parameters. Hence the values of the outputs

are almost same

 Having better theoretical and achieved occupancy does not always mean better time performance

 In this example, SM efficiency is more effective on the execution time of the kernel

 Even though S1 has better occupancy, the execution times of S2 are better than those in S1 in some cases



Causes of Low Achieved Occupancy

1. Unbalanced workload within blocks

 the warps in a block have unbalanced workload

2. Unbalanced workload across blocks

 the blocks in a grid have unbalanced workload

3. Too few blocks launched

 running few blocks in an SM than the maximum active blocks per SM

4. Partial last wave

 maximum number of warps that can be active at once in an SM

 https://docs.nvidia.com/gameworks/content/developertools/desktop/analysi

s/report/cudaexperiments/kernellevel/achievedoccupancy.htm
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Optimizing Parallel Reduction in CUDA

Mark Harris

NVIDIA Developer Technology

https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
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https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf


Parallel Reduction

 Tree based approach is used for each thread block
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 We need too many blocks when:

 the array size is very large

 we want to keep all SMs on the GPU busy

 Each block does reduction over each portion of the array and produces a single output

 How do we combine the output of each block?

Ref: Mark Harris - https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf  



Global Synchronization

 Once the partial outputs of the blocks are produced, a synchronization mechanism between

the blocks is needed in order to combine them.

 The blocks must wait in a synchronization point until all the blocks complete producing their

outputs. Then recursive processes should follow to obtain overall output.

 In CUDA, the synchronization between the threads in the same block is possible.

 However, the threads in different blocks can not be synchronized each other.

 Because the synchronization of the blocks is expensive for the GPUs whose processor counts is large

 In fact, CUDA forces the programmers to create fewer blocks which may reduce the overall efficiency

 Using multiple kernels is a good solution. There is an implicit barrier between the kernel

launches. The next kernel can not be executed before the current kernel finishes its

execution.

 By the way, kernel launch has low overhead
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Multiple Kernels and The Goal

 The code of both kernels is same. So we can launch them recursively.
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Kernel runs with 

8 blocks

Kernel runs with 

1 block

Ref: Mark Harris - https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf  

 Since the reduction has low arithmetic cost, we should try to achieve high bandwidth.

 NVIDIA G80 is used in this experiment.

 86GB/s memory bandwidth



Reduction 1: Interleaved Addressing
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Local thread id

Global thread id

Threads in the same block synchronize here

Threads whose local id is 0 or multiple of 2*s

Ref: Mark Harris - https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf  



Interleaved Addressing 1
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Ref: Mark Harris - https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf  



Reduction 1: Interleaved Addressing

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA

33

Ref: Mark Harris - https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf  



Performance for 4M  element reduction

 The block size is 128 threads for all kernel launches
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Ref: Mark Harris - https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf  



Reduction 2: Interleaved Addressing
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Ref: Mark Harris - https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf  



Interleaved Addressing 2
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Ref: Mark Harris - https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf  

Valid for first generation 

hardware



Performance for 4M element reduction
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Ref: Mark Harris - https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf  



Sequential Addressing
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Ref: Mark Harris - https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf  

Conflict Free



Reduction 3: Sequential Addressing
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Ref: Mark Harris - https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf  



Performance for 4M element reduction
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Ref: Mark Harris - https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf  



Idle Threads

 Half of the threads are idle in the first iteration of the loop. Wasteful!
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Ref: Mark Harris - https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf  



Reduction 4: First Add During Load
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Ref: Mark Harris - https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf  



Performance for 4M element reduction
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Ref: Mark Harris - https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf  



Unrolling the Last Warp

 17 GB/s is very low

 Loop overhead occurs!

 The number of the active threads reduces at each iteration of the loop

 When s < 32, only one warp is active!

 Since the threads in a warp execute the same instruction at a time, we do not

need to synchronize them and do not need __syncthreads() function

 No need to evaluate last 6 iterations of the loop for the remaining warps

 So one can unroll the last 6 iterations of the loop

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA 44



Reduction 5: Unroll the Last Warp
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Ref: Mark Harris - https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf  

Disabling 

optimizations 

(such as caching)



Performance for 4M element reduction
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Ref: Mark Harris - https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf  



Complete Unrolling

 Can we unroll all of the iterations of the loop?

 Since the possible values of the block size are fixed and known at compile

time and there is an upper limit on it, one can completely unroll the

iterations of the loop.

 Using C++ templates enables us to do it
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Function template parameter

Ref: Mark Harris - https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf  



Completely Unrolled

 The maximum block size is 1024 in newer GPUs !

 Reds are evaluated at compile time
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Invoking Template Kernels
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 10 + 1 (1024) = 11 possible block sizes

Ref: Mark Harris - https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf  



Performance for 4M element reduction
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Ref: Mark Harris - https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf  



Cost and Algorithm Cascading

 Step Complexity: O(log N)

 Work Complexity: O(N)

 Time Complexity: O(log N)

 Processor Time Complexity: O(Nlog N)

 Algorithm Cascading: Combining sequential and parallel reduction

 Each thread performs loading and summing multiple elements sequentially and

store the result to the shared memory

 Tree based reduction performs through shared memory in parallel
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Reduction 7: Multiple Adds / Thread
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Ref: Mark Harris - https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf  

Maintain coalescing

Decreasing the number of 

blocks means increasing 

the number of iterations 

of ‘while’ loop 

A balance between the 

level of the tree and the 

iteration of the loop 

should be maintained



Performance for 4M element reduction
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Ref: Mark Harris - https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf  



Final Optimized Kernel
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Ref: Mark Harris - https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf  



Performance Comparison
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Ref: Mark Harris - https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf  



References

 https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-

product-literature/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf

 https://docs.nvidia.com/cuda/pdf/CURAND_Library.pdf

 https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EVENT.html

 https://docs.nvidia.com/cuda/profiler-users-guide

 Dülger, Ö., Oğuztüzün, H. & Demirekler, M. Memory Coalescing Implementation of 

Metropolis Resampling on Graphics Processing Unit. J Sign Process Syst 90, 433–

447 (2018) https://rdcu.be/cLz8N

 https://docs.nvidia.com/cuda/cuda-occupancy-calculator/index.html

 https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/

report/cudaexperiments/kernellevel/achievedoccupancy.htm

 https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

27 April 2022EuroCC@Turkey, Parallel Computing on GPUs with CUDA 56

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf
https://docs.nvidia.com/cuda/pdf/CURAND_Library.pdf
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EVENT.html
https://docs.nvidia.com/cuda/profiler-users-guide
https://rdcu.be/cLz8N
https://docs.nvidia.com/cuda/cuda-occupancy-calculator/index.html
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedoccupancy.htm
https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

